Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Problème Fonction limite

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Problème Fonction limite
Message de julius345 posté le 12-12-2021 à 22:24:01 (S | E | F)
Bonjour j'ai cet exercice à faire et je n'y arrive pas.

a est un nombre réel et f une fonction définie sur ]- l'infini ;a [ U ]a ; + l'infini [
Dans un repère orthonormé C est la courbe représentative de f.

Juliette affirme : Si f est définie sur ]-l'infinie ;a[U ]a;+l'infini [ alors la droite d'équation x= a est une asymptote vertical à la courbe C "

En étudiant f(x) = x²-a² / x-a montrer que l'affirmation de Juliette est fausse


Réponse : Problème Fonction limite de note2music, postée le 12-12-2021 à 23:32:22 (S | E)
il Faut etudier limf(x) quand x tend vers a donc ca nous fait , lim x*2-a*2/x-a quand x tend vers a egal à lim (x-a)(x+a)/(x-a) la on simplifie par x-a et on obtient lim x+a quand x tend vers a et donc cette limite est agale à 2a qui est different de l infini don ici on a pas une asymptote mais plutot un prolongement par continuite voila j espere etre claire



Réponse : Problème Fonction limite de note2music, postée le 12-12-2021 à 23:34:46 (S | E)
remarque ici on peut simplifier parce que x tend vers a , et x different de a donc on smplifie par x-a car il est different de zero



Réponse : Problème Fonction limite de tiruxa, postée le 13-12-2021 à 10:49:15 (S | E)
Bonjour

Juste une remarque, si on appelle g la fonction définie sur R par g(x)=x²

On a f(x)=(g(x)-g(a))/(x-a) et comme g est dérivable sur R la limite de (g(x)-g(a))/(x-a) quand x tend vers a est égale à g'(a) soit 2a puisque g'(x)=2x.

On peut refaire ceci avec n'importe quelle fonction g dérivable en a.




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.