<< Forum maths || En bas
[Maths]problème avec des équations du 2ème degré
Message de mimi1727 posté le 11-03-2008 à 11:08:13 (S | E | F)
bonjour,je cherche quelqu'un qui puisse m'aider avec un problème d'équation du deuxième degré
Voici le problème:
d)Dans une plaine se trouve deux tours distantes de 50 pas,l'une haute de 30 pas,l'autre de 40.
Entre ces deux tours,deux oiseaux se dirigent vers une mouche posée sur le sol.
Partis simultanément du sommet de chacune des tours et volant à la même vitesse,ils arrivent au même temps à la fontaine
Quelle est la distance de la fontaine au pied de chaque tour???
merci de me répondre rapidement car j'ai un teste vendredi sur cela
Merci!!!!!!!!!!!!!
Message de mimi1727 posté le 11-03-2008 à 11:08:13 (S | E | F)
bonjour,je cherche quelqu'un qui puisse m'aider avec un problème d'équation du deuxième degré
Voici le problème:
d)Dans une plaine se trouve deux tours distantes de 50 pas,l'une haute de 30 pas,l'autre de 40.
Entre ces deux tours,deux oiseaux se dirigent vers une mouche posée sur le sol.
Partis simultanément du sommet de chacune des tours et volant à la même vitesse,ils arrivent au même temps à la fontaine
Quelle est la distance de la fontaine au pied de chaque tour???
merci de me répondre rapidement car j'ai un teste vendredi sur cela
Merci!!!!!!!!!!!!!
Réponse: [Maths]problème avec des équations du 2ème degré de mohouah, postée le 11-03-2008 à 15:06:39 (S | E)
1 - les 2 tours sont distantes de 50 pieds,
2 - la hauteur de l'une est de 40 pieds, l'autre est haute de 30 pieds
3 - les 2 oiseaux volent à la même vitesse.
Solution :
Puisque les oiseaux volent à la même vitesse et qu'ils arrivent au même instant à la fontaine, cela signifie que la distance entre le sommet de chaque tour et la fontaine est la même.
Si l'on joigne par des segments de droites les sommets, les pieds de chaque tour et la fontaine, on dessinera 2 triangles rectangles (ce que je ne saurai réaliser sur pc).
En prenant (a pieds) comme distance entre une tour et la fontaine, on aura (50-a pieds)comme distance entre la fontaine et l'autre tour.
Application du théorème Pythagore pour le calcul d'hypothénuse de triangle rectangle :
- 1ere équation : H² = 30² + a²
- 2eme équation : H² = 40² + (50-a)²
Il suffit de résoudre ce système d'équations pour trouver :
- Distance entre la 1ere tour et la fontaine : 32 pieds,
- Distance entre la 2eme tour et la fontaine : 18 pieds.