<< Forum maths || En bas
[Maths]Limites
Message de rayan2023 posté le 03-07-2008 à 01:05:42 (S | E | F)
bonjour tout le monde,
j'aimerai bien qu'on m'aide à resoudre cette limite:
limite pour x qui tend vers l'infini de
ln(x²+x+4)/x
merci d'avance
Message de rayan2023 posté le 03-07-2008 à 01:05:42 (S | E | F)
bonjour tout le monde,
j'aimerai bien qu'on m'aide à resoudre cette limite:
limite pour x qui tend vers l'infini de
ln(x²+x+4)/x
merci d'avance
Réponse: [Maths]Limites de prue3, postée le 03-07-2008 à 01:21:08 (S | E)
lim ln(x²+x+4)/x= lim ln(x²(1+1/x+4/x²))/x= lim (lnx²+ ln(1+1/x+4/x²))/x
= lim (2lnx/x) + (ln(1+ 1/x+ 4/x²)/x)= lim (-2ln(-x))/-x+ 1/x *ln (1+ 1/x+ 4/x²))= 0
-------------------
Modifié par magstmarc le 03-07-2008 09:31
La fonction x--> (ln(x²+x+4))/x est définie pour tout x non nul (même pour x strictement négatif !)mais ln(-x) n'existe pas si x est positif
Si x > 0 on peut utiliser pour conclure grâce à la transformation faite (mise en facteur du terme dominant), puis
-------------------
Modifié par magstmarc le 03-07-2008 09:45
Réponse: [Maths]Limites de TravisKidd, postée le 03-07-2008 à 04:24:11 (S | E)
This limit is fairly obvious, as lim(ln(xn)/x) = 0 for all n. However, if you need more justification, you can use L'Hôpital's Rule:
Both the numerator ln(x2+x+4) and the denominator x tend to infinity as x tends to infinity, so the limit will be the limit of the quotient of the derivatives of the numerator and the denominator.
The derivative of the numerator is (2x+1)/(x2+x+4), and the derivative of the denominator is 1. Hence the quotient is (2x+1)/(x2+x+4). If we try to find the limit for this, we see that L'Hôpital's Rule is again in order. Taking derivatives again we get 2 for the numerator and 2x+1 for the denoinator.
So your answer will be the limit for 2/(2x+1), which is clearly 0.
Réponse: [Maths]Limites de dfred, postée le 04-08-2008 à 11:54:12 (S | E)
lim(x2+X+4/X)=limx2/X=limx=infini
-------------------
Modifié par magstmarc le 04-08-2008 14:30 C'est le logarithme qui est divisé par x, pas le polynôme, donc c'est un peu plus compliqué que ça