<< Forum maths || En bas
Petit problème
Message de kk64 posté le 11-01-2010 à 12:37:44 (S | E | F)
Voilà, j'ai un petit problème de maths à vous soumettre....
Autour d'une pelouse carrée on repique 32 géraniums espacés de 1,5 m.
Combien mesure le côté de cette pelouse sachant qu'il y a un géranium à chacun des sommets du carré ?
Merci de m'éclairer....
Message de kk64 posté le 11-01-2010 à 12:37:44 (S | E | F)
Voilà, j'ai un petit problème de maths à vous soumettre....
Autour d'une pelouse carrée on repique 32 géraniums espacés de 1,5 m.
Combien mesure le côté de cette pelouse sachant qu'il y a un géranium à chacun des sommets du carré ?
Merci de m'éclairer....
Réponse: Petit problème de rifaat, postée le 11-01-2010 à 18:17:43 (S | E)
Autour d'une pelouse carrée on repique 32 géraniums espacés de 1,5 m.
Combien mesure le côté de cette pelouse sachant qu'il y a un géranium à chacun des sommets du carré ?
soit a: le côté de ce carré et P: periferique du carré.
On a : P = 4xa (1) et P = 1.5x( 32 - 4 ) (2)
" 32 est le nombre des géraniums mais on doit eliminer les 4 géranium qu'ils sont sur les sommets "
On a donc : (1)=(2) ==> 4xa = 1.5 x ( 32 - 4 )
==> a = 1.5 x (32 - 4 )/4 = 10.5 m .
Note:
Il suffit juste de comprendre la phrase " sachant qu'il y a un géranium à chacun des sommets du carré " pour pouvoir repondre.
Réponse: Petit problème de plumemeteore, postée le 11-01-2010 à 22:24:33 (S | E)
Bonjour.
10,5 m est une réponse fausse et l'explication de cette solution signifie que les géraniums des coins sont comptés deux fois.
En commençant par un coin et marchant autour du carré en comptant les géraniums à partir de 1 pour le géranium de ce coin, on comptera 32 pour le dernier géranium et on bouclera le périmètre en rejoignant le premier géranium qu'on comptera alors 33.
Le périmètre compte donc 33-1 = 32 intervalles.
Un côté compte 32/4 = 8 intervalles.
Un côté mesure 1,5 m x 8 = 12 m.
<< Forum maths