Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Nombre pair

<< Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Nombre pair
Message de kool posté le 27-09-2010 à 22:19:26 (S | E | F)
bonsoir. notre professeur de maths nouas a demandé de faire l'exercice suivant: est-ce qu'on peut avoir des nombres paires a et b et c tel que: a²+b²+c²=14.
voici ma réponse: on a a² et b² et c² des nombres
et on connait que la somme de 3 nombres paires est un nombre paire
et puisque 14 est un nombre paire
donc on peut avoir trois nombres paires tel que a²+b²+c²=14.
je voudrais savoir si cette réponse est correcte.
et merci d'avance


Réponse: Nombre pair de walidm, postée le 27-09-2010 à 22:29:03 (S | E)
Bonjour.
Si a est un nombre entier pair: a est multiple de 2, donc a² est multiple de 4.
La somme de nombres divisibles par 4 est un nombre divisible par 4.
Or 14 n'est pas un multiple de 4.
Ta réponse nécessite une révision.



Réponse: Nombre pair de aissa_foul, postée le 28-09-2010 à 15:13:45 (S | E)
quelque sois un nombre paire on peus l'écrire par exemple:x=2k/k et x sont d nombre,
et quand tu remplace a=2h et b=2k et c=2l dans l'exersice tu vas trouver que a²+b²+c²=14



Réponse: Nombre pair de azerty123, postée le 28-09-2010 à 15:19:07 (S | E)
Tout d'abord, si tu ne vois pas la solution, essaie de voir avec des exemples.
Les choix de a,b et c sont 0,2,4,6...
On voit tout de suite que les triplets (0,0,2), (0,2,0) et (2,0,0) ne marchent pas.
2²=4/= 14
De même, comme un carré est toujours positif, si a, b ou c sont supérieurs ou égaux à 4, c'est foutu.
Il reste seulement les triplets (0,2,2),(2,0,2) et (0,0,2).
Mais de même, 2²+2²=8, ça ne suffit pas.
C'est donc impossible.

Comme démonstration, je te propose un raisonnement par l'absurde.
Supposons que les chiffres pairs a, b et c vérifient a²+b²+c²=14
Comme ils sont pairs, on peut les écrire de la forme :
a=2k, b=2k' et c=2k" avec k un entier quelconque.

On a alors 4k²+4k'²+4k"²=14 c'est-à-dire 2(k²+k'²+k"²)= 7.
Cela reviendrait à affirmer que 7 est un chiffre pair...
En voilà une belle contradiction.
Donc ce n'est pas possible qu'ils soient pairs.






[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


<< Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.