Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Démonstraction par récurrence TS

<< Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Démonstraction par récurrence TS
Message de liliroubaix posté le 04-11-2010 à 20:40:36 (S | E | F)
Bonsoir,
j'ai un dm de math pour demain, et il y a juste une démonstration que je n'arrive pas à faire

Sachant que la suite est définie par récurrence :
Un+1 = Un + n
et que U0 = 1

et que j'ai aussi établie précédemment une conjecture dont je suis sûre :
Un - n = (n² - n + 2) / 2
D'où Un = (n² + n + 2) / 2

Alors là il faut démontrer la proposition ainsi conjecturée, et là je bloque

Je pense qu'il faut faire une démonstration par récurrence

On suppose que : Un = (n² + n + 2) / 2
et on démontre que Un+1 = ( (n+1)² + (n+1) + 2 ) / 2
c'est-à-dire que Un+1 = (n² + 3n + 4) / 2 ( après développement et simplification )

Le problème c'est que partant de Un, je fais :
Un + n = (n² + n + 2) / 2 + n
D'où Un+1 = (n² + 3n + 2) / 2 (après déveloeppement et simplification)
Or ce n'est pas ce que je devais trouver
Si quelqu'un pouvait m'aider

Merci d'avance



Réponse: Démonstraction par récurrence TS de taconnet, postée le 04-11-2010 à 21:07:42 (S | E)
Bonjour.

Un+1 = Un + n <══> Un+1 - Un = n

Donc

U1 - U0 = 0
U2 - U1 = 1
U3 - U2 = 2
U4 - U3 = 3
U5 - U4 = 4
..................................
..................................

Un-2 - Un-3 = n-3
Un-1 - Un-2 = n-2
Un - Un-1 = n-1
Un+1 - Un = n

En additionnant membre à membre ces égalités on obtient :

Un+1 - U0 = 1+2+3+....+n = n(n+1)/2

Un+1 = 1 + n(n+1)/2

Soit :






Réponse: Démonstraction par récurrence TS de liliroubaix, postée le 04-11-2010 à 22:29:03 (S | E)
Ah oui !
C'est beaucoup plus clair maintenant !
Merci beaucoup




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


<< Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.