Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Parabole

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Parabole
Message de milou02 posté le 09-03-2011 à 16:08:41 (S | E | F)
Bonjour, en fait je me demandais si on pouvait dessiner une parabole si y n'existe pas. Parce que j'ai fait un exercice et à la fin j'ai obtenu -2x²+6x-2, il n'y a pas de y, alors comment je fais pour le représenter? Merci


Réponse: Parabole de marsu69, postée le 09-03-2011 à 16:44:34 (S | E)
Bonjour,
On note : y(x)= ax²+bx+c l'équation d'une parabole.
Pour tracer cette parabole dans ton exemple, tu prends simplement des points se situant dans l'intervalle d'étude donné .
Ex : si x=o alors y=-2 Tu auras donc un point A(0;-2) par où passera ta parabole.



Réponse: Parabole de milou02, postée le 09-03-2011 à 18:25:06 (S | E)
Non le problème justement c'est que ce n'est pas y=-2x²+6x-2 c'est juste "-2x²+6x-2". L'énoncer de base c'est: |1-x|-|x-x²|=|-x²-x-1|-5x. J'ai effectué les différents cas et j'ai obtenu soit:
1)2x=0
2)4x-2=0
3)-2x²+6x-2
les 2 premiers sont facile à représenter mais je n'arrive pas à dessiner les 3 car il n'y a PAS de y. Peut-être que c'est impossible et qu'on ne peut pas le représenter?



Réponse: Parabole de nick94, postée le 09-03-2011 à 18:33:26 (S | E)
Bonjour,
d'après ton énoncé, il ne s'agit pas de tracer mais de résoudre une équation, c'est à dire trouver les x qui rendent l'égalité vraie.
Peux-tu détailler ce qui t'a amené à écrire :
1)2x=0
2)4x-2=0
quant au 3) il y aurait au moins = ...



Réponse: Parabole de milou02, postée le 09-03-2011 à 20:05:14 (S | E)
Oui, je dois résoudre mais on ne peut pas résoudre une équation comme cela sans le dessiner.
Pour résoudre, j'ai fait un tableau de signe. Les racines de |1-x|-|x-x²|=|-x²-x-1|-5x sont 0 et 1. Il y a donc 3 cas pour résoudre,
-soit x est plus petit ou égal à 0 => 1-x-x+x²=x²+x+1-5x => 2x=0
-soit x est compris entre 0 et 1 =>-1+x-x+x²=x²+x+1-5x => 4x-2=0
-soit x est plus grand ou égal à 1 =>-1+x+x-x²=x²+x+1-5x => -2x²+6x-2=0

Après je dois dessiner les solutions sur un graphe et rejeter les réponses qui ne correspondent pas. Je l'ai fait pour les 2 premiers mais je n'arrive pas à dessiner la parabole car comme il n'y a pas "y",et je ne sais pas comment on doit faire.

Désolé mais je ne suis pas très doué pour les explications, j'espère que tu auras compris



Réponse: Parabole de logon, postée le 09-03-2011 à 20:34:57 (S | E)

Milou,


les points d'une courbe ont tous une abscisse x et une ordonnée y

L'équation de la courbe est de la forme f(x) = bla bla ou y = bla blaImages





Réponse: Parabole de nick94, postée le 09-03-2011 à 21:39:09 (S | E)
Je ne suis pas d'accord avec tes 2 premiers résultats :
- si x est plus petit ou égal à 0, |1-x| = 1-x mais |x-x²|= -x+x² donc 1) est faux
- si x est compris entre 0 et 1, |1-x| = 1-x et |x-x²|= x-x² donc 2) est faux

Pour 3), as-tu compris pourquoi le schéma de logon te donne la solution ?



Réponse: Parabole de milou02, postée le 10-03-2011 à 08:52:05 (S | E)
j'ai refait l'exercice et j'obtient pour le
1)-2x²+4x=0
2)2x=0
3)-2x²+6x-2=0

Donc, si j'ai bien compris, pour construire la parabole, on part du principe y=-2x²+4x et y=-2x²+6x-2 et là on trace comme une simple parabole?




Réponse: Parabole de nick94, postée le 10-03-2011 à 20:51:46 (S | E)
Pour résoudre : -2x²+4x=0, il n'y a pas besoin de tracer une parabole, il suffit de factoriser x puis d'appliquer le théorème du produit nul.
Pour 3), l'intérêt de construire la parabole P d'équation : y=-2x²+6x-2 est de lire les abscisses des points d'intesection de P avec l'axe des abscisses, ce sont les solutions de l'équation.



Réponse: Parabole de milou02, postée le 11-03-2011 à 10:09:33 (S | E)
d'accord merci beaucoup




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.