Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Probabilité

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Probabilité
Message de alcino70 posté le 30-01-2012 à 22:21:14 (S | E | F)
Bonsoir,

J'ai un exercice qui est le suivant:

On dispose du quadrillage présenté ci-dessous. Un chemin de A vers B est une suite de six déplacements d'une case: trois déplacements vers le haut (H) et trois déplacements vers la droite (D) dans n'importe quel ordre.

1) Déterminer à l'aide d'un arbre le nombre de chemins de A vers B.

2) On choisit au hasard l'un des chemins de A vers B.
a) Quelle est la probabilité pour qu'il passe par le point M? le point N?
b) Quelle est la probabilité pour qu'il passe par les deux points M et N?
c) En déduire la probabilité pour que ce chemin passe par l'un au moins des deux points.

Lien internet


Alors j'ai fait l'arbre de probabilités et je trouve 20 issues. Grâce à l'arbre je trouve que la probabilité qu'il passe par M est de 1/2 et par N de 3/5 . Qu'il passe par les 2 point 6/20 et qu'il passe par l'un ou l'autre 4/5.

Ce que j'aimerais comprendre c'est comment on arrive à trouver ces résultats sans arbres de probabilités mais sous forme ( ; ; ; ; ) là je n'ai pas vraiment compris. Par exemple comment peut on savoir qu'il y a 20 issues et trouver la probabilité de N ?


Merci d'avance

Bonsoir




Réponse: Probabilité de nick94, postée le 30-01-2012 à 23:42:22 (S | E)
Bonsoir,
il s'agit de dénombrement :
Lien internet

Par exemple, pour déterminer le nombre de chemins de A vers B, il faut déterminer le nombre de combinaisons de 3 éléments parmi 6 (placer 3 H parmi 6 déplacements), c'est à dire :
ce qui fait 20.



Réponse: Probabilité de alcino70, postée le 31-01-2012 à 20:29:16 (S | E)
bonjour ,


Oui d'accord mais si on veut par exemple trouver le nombre de chemin passant par m et n. Il faut que dans 4 ( ; ; ; ) il y ait 2 h et 2 d. Mais il peut y avoir par exemple aussi (h,d,d,d). Comment peut on faire ici ?


Merci beaucoup

au revoir



Réponse: Probabilité de alcino70, postée le 31-01-2012 à 20:52:00 (S | E)
Bonjour,

J'ai essayé de faire ceci

(4;3;2;1) divisé par (2;1;2;1) cela fait 6 donc je trouve que le cardinal de faire n et m est de 6; Soit sur un univers de 20 soit 6/20 mais cela est moitié moins des 12/20 que j'ai trouvé avec l'arbre des possibilités ; Où est ce que cela ne va pas ?


Merci d'avance

au revoir





Réponse: Probabilité de nick94, postée le 31-01-2012 à 21:43:55 (S | E)
Pour trouver le nombre de chemins passant par M et N, on peut remarquer que : de A à M, il n'y a qu'un chemin ; de M à N, 3 chemins (nombre de combinaisons de 1 élément parmi 3 (placer 1 H parmi 3 déplacements)) ; de N à B, 2 chemins (nombre de combinaisons de 1 élément parmi 2 (placer 1 H parmi 2 déplacements), mais, surtout, ça se voit immédiatement !)
Donc de A à B, 6 chemins (3 * 2 = 6)



Réponse: Probabilité de alcino70, postée le 31-01-2012 à 22:19:06 (S | E)
Bonsoir ,

D'accord nick94 merci pour votre réponse . Mais maintenant si on cherche le nombre de chemin passant par n comment peut on faire j'ai essayé avec le calcul suivant pour passer par n il faut qu'il y ait dans les premières cases 2 d et 2 h soit
(4;3;2;1) (4 choix , puis 3, puis 2, puis 1
(2;1;2;1) 2 D et 2 H
Cela me donne 6 ce qui est impossible vu que le nombre de chemins passant par m et n est de 6 également et là je ne vois pas comment faire.

Merci d'avance

au revoir




Réponse: Probabilité de nick94, postée le 01-02-2012 à 00:19:21 (S | E)
Pour trouver le nombre de chemins passant par N, on peut remarquer que : de A à N, il y a 6 chemins (nombre de combinaisons de 2 éléments parmi 4 (placer 2 H parmi 4 déplacements)) ; de N à B, 2 chemins.
Donc de A à B, 12 chemins (6 * 2 = 12)




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.