Tests de culture générale gratuits> Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés:
- Jeux gratuits
- Nos autres sites



Publicités :





Résolution racine de racine nème

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Résolution racine de racine nème
Message de redband59 posté le 15-10-2016 à 15:05:57 (S | E | F)
Bonjour,
Je suis étudiant en BAC supérieur et je dois corriger ma dernière interrogation, j'ai cependant 3 exercices qui me posent problèmes, pourriez-vous m'apporter votre aide, s'il vous plaît ?
Voici les exercices ainsi que ma résolution.
Merci à ceux qui pourront m'apporter leur aide.
1)
(√3+√5)²-(√3-√5)² =
3+2*√2*√5+5-(3-2√3*√5+5) =
3+2√15+5-3+2√15+5 =
1        
(4√15+10)
4√15+10   (4√15+10)
4√15+10
40√15+100+16*15+40√15
140-100
Puis-je encore simplifier ou ai-je commis une erreur ?
2)
log(a)²-log(b)²-log(a/b)
log(b/a)
Ici je comprend que je peux simplifier les logs mais par contre après que dois-je faire du reste ?


3)
Montrer l'égalité suivante : ³√38+17√5 = 2+√5
Note : la racine cubique comprend le 17√5
Sur celui ci je vois que je peux transformer les racines en exposants, ensuite je suis perdu, je peux multiplier l'exposant de la du cubique avec les de la racine carrée ?
-------------------
Modifié par bridg le 17-10-2016 07:59
Merci d'écrire à même le site et de ne pas recommencer une telle mise en forme. Refaite.



Réponse : Résolution racine de racine nème de lemagemasque, postée le 15-10-2016 à 15:31:49 (S | E)
Bonjour,
Pour la première question, vous ne trouvez pas qu'il y a quelque chose à remarquer ?
Pour la deuxième question, sur quoi porte chaque carré : log ou l'argument ?
Pour la dernière question, en partant du dernier membre de l'égalité, en le transformant en racine cubique et en développant l'argument de la racine cubique selon le binôme de Newton, vous trouverez facilement.
Bonne journée !



Réponse : Résolution racine de racine nème de redband59, postée le 15-10-2016 à 15:55:34 (S | E)
Merci pour votre réponse.
Ppour le premier exercice une erreur s'est glissée dans la réponse finale :
Le résultat correct est :
4√15 + 10
140
Je ne peux pas diviser par 10 étant donné que le 4√15 n'est pas divisible, mais j'hésite à dire que c'est la réponse finale.
Pour la deuxième question, le ² porte sur l'argument j'imagine étant donné qu'il porte sur la parenthèse ... est-ce une question ou un indice ?
Pour la troisième j'ai réussi en suivant votre conseil, merci !
-------------------
Modifié par bridg le 17-10-2016 08:10



Réponse : Résolution racine de racine nème de lemagemasque, postée le 15-10-2016 à 16:21:29 (S | E)
Pour la première question, vous avez deux carrés séparés par un - donc
Pour la deuxième question, vous avez mal recopié l'énoncé : log(a^2)-log(b^2)-log(a/b)=log(a/b)
Si vous ne recopiez pas correctement l'énoncé on ne risque pas de trouver le bon résultat...
Quelle propriété du logarithme connaissez-vous concernant les puissances ?



Réponse : Résolution racine de racine nème de redband59, postée le 15-10-2016 à 18:02:45 (S | E)
Bonjour.
Et bien si j'ai deux carrés séparés par un moins, je peux appliquer la formule des identités remarquables sur chaqu'un, chacun donc developer développer comme je l'ai fait non ?
Je ne comprend comprends pas ce que vous voulez pointer comme formule ou action.

Pour l'exercice sur les logarithmes, après vérification c'est bien log(b/a) au dénominateur et les logs sont notés log(x)² même si cela ne change pas grand chose je pense ..
merci de votre temps Merci du temps que vous me consacrez.
-------------------
Modifié par bridg le 17-10-2016 08:12



Réponse : Résolution racine de racine nème de logon, postée le 15-10-2016 à 18:44:52 (S | E)

-------------------
Modifié par logon le 15-10-2016 18:45
Bonsoir lemagemasqué vous a donné la solution.

-------------------
Modifié par logon le 15-10-2016 18:45
Essayez d'arriver à 15!!!




Réponse : Résolution racine de racine nème de lemagemasque, postée le 15-10-2016 à 19:22:30 (S | E)
Je viens de comprendre ce que vous avez écrit pour la question 1... En fait, il vous faut écrire les règles de simplification des log sur un papier et regarder cas par cas.
Je vous mets juste une propriété en plus qui pourra vous aider : log(b/a)=-log(a/b) (bien sûr pour a et b non nuls et de même signe).

Pour la question 1, quelles identités remarquables connaissez-vous ?

Merci de bien écrire les énoncés complètement à chaque fois (simplifier...) et de faire un effort sur l'écriture des expressions mathématiques (pour les fractions, mettez des parenthèses et des barres obliques sinon on prend votre retour à la ligne pour un égal) sinon on a l'impression que vous nous balancez votre question avec un "démerdez-vous avec".



Réponse : Résolution racine de racine nème de redband59, postée le 15-10-2016 à 20:03:48 (S | E)
Oui désolé, j'avais mis en forme mais le résultat n'était pas la là.
L
a question est donc bien 1/(√3+√5)²-(√3-√5)²
Si je fais a²-b² de ceci je ne tombe jamais sur 15 ... je vois que j'ai noté a²-b² = (a+b)*(a-b) donc (√3*√3)-(√3*√5)+(√5*√3)-(√5*√5)

Je reprend reprends des maths après dix ans sans en avoir vu, cela me prendra un peu de temps mais je me suis déja bien amélioré par rapport au début

Désolé pour l’incompréhension je souhaitait mettre ça en forme j'ai tenté de le résoudre 15-20 fois sans jamais tomber sur quelque chose de "logique" pour réponse ...
Encore merci !
-------------------
Modifié par bridg le 17-10-2016 08:15



Réponse : Résolution racine de racine nème de logon, postée le 15-10-2016 à 20:27:42 (S | E)
attention
a c'est toute la parenthèse (√3+√5)
et b c'est la deuxième parenthèse en entier...(√3-√5)
Vous verrez il y a des termes qui se simplifient....



Réponse : Résolution racine de racine nème de math2202, postée le 22-10-2016 à 12:40:57 (S | E)

Au cas ou vous avez besoin d'aide, allez voir ce groupe, ils aident super bien! allez sur Facebook est rechercher le groupe "Aide en Maths - Réponse garantie dans les 24h!" Lien internet
 




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> CATEGORIES : Les tests les plus populaires | Les meilleurs | Grand jeu | Cinéma/Séries | Culture générale | Géographie | Histoire | Japonais | Latin | Littérature | Musique | Sciences et médecine | Provençal | Sports

> SOUS-CATEGORIES : Animaux et insectes, sauf équitation | Art culinaire-produits-nourriture-recettes-spécialités | Astronomie et espace | Auteurs d'oeuvres célèbres | Bandes dessinées, mangas, dessins animés | Baseball | Basket ball | Botanique,jardins,plantes | Buffy contre les vampires | Charmed | Chevaux et équitation | Chimie | Consoles et ordinateurs | Cours de breton | Cyclisme | Dates importantes | Emissions de télévision-présentateurs-journalistes-reality show | Etats-Unis/USA | Films de cinéma | Fleuves-mers-canaux-océans-côtes-îles-rivières-barrages | Football | France | Handball | Harry Potter | Histoire et vie courante | Inclassable | Instruments de musique | Jeux reposant sur des mots | Langue française | Latin | Les Simpson | Livres | Monuments et architecture | Musique-compositeurs-oeuvres-solfège-interprètes | Mythologie | Médecine | Naruto | Oeuvres-peintres-courants artistiques-couleurs | Paroles de chansons | Pays | Personnages célèbres | Physique | Pokemon | Poésie, poèmes | Proverbes et expressions | Royaume-Uni | Rugby | Sciences | Seigneur des anneaux | Sténo/Sténographie | Série Plus Belle La Vie | Séries | Tennis | Union européenne/Pays européens | Villes | Voitures, permis de conduire, code de la route | Questions 1 | Questions 2 | Questions 3

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Plan du site | Cours, quiz et exercices de culture générale 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.